

Spin Dynamics in Singlet Fission

<u>Thomas S. C. MacDonald^a, Miles I. Collins^a, Luis M. Campos^b, Elango Kumarasamy^b, Samuel N. Sanders^b,</u> Matthew Y. Sfeir^c, Murad Tayebjee^a, Dane R. McCamey^a

^aARC Centre of Excellence in Exciton Science, School of Physics, UNSW Sydney, NSW 2052, Australia; ^bDepartment of Chemistry, Columbia University, New York 10027, USA; ^cCenter for Functional Nanomaterials, Brookhaven National Laboratory, New York 11973, USA

- information,² DNP³

Resolving transitions with nutation p-ESR

SF cw-ESR spectra are **complex and overlapping**. Nutation p-ESR lets us **identify** (1D) or **resolve** (2D) transitions by field or time.

Transient cw-ESR reveals evolving spin populations

- Narrow $^{5}(TT)_{0 \leftrightarrow +1}$ signals from <100 1000s of ns
- Broader ${}^{3}T_{0 \leftrightarrow +1}$ signals from 1 10s of µs
- Mainly $m_s = 0$, **net absorptive**: more $m_s < 0$ than $m_s > 0$
- Transitions assigned by fitting, analogy; analysis complicated by spectral overlap

Quintets form with dynamic J_{iso}

Narrow quintet ESR spectra only possible when inter-triplet coupling J_{iso} is large, but that prevents ${}^{1}(TT)_{0} \leftrightarrow {}^{5}(TT)_{m}$ mixing: we need a **time-dependent** $J_{iso}(t)$. In a two-triplet basis:

 $\widehat{H}_{spin} = \widehat{H}_{ee}(t) + \widehat{H}_{zee,i} + \widehat{H}_{zfs,i}$ $= J_{iso}(t)(\widehat{S}_1 \cdot \widehat{S}_2) + \sum_{i=1}^{\infty} (\mu_B g B_0 \cdot \widehat{S}_i + \widehat{S}_i \cdot D_i \cdot \widehat{S}_i)$

Conclusions: cw-ESR, p-ESR, and theory

- Cw-ESR signals are prompt, net-absorptive, consistent with 'non-stationary' formation
- P-ESR signals are delayed, comparable $\pm m_s$ character, consistent with 'stationary' formation

We simulate $(TT)_m$ formation by solving the TD Schrödinger equation for $(TT)_0$ evolving under a model spin Hamiltonian^{5,6} to find **two distinct modes** of $^{1}(TT)_{0} \leftrightarrow ^{5}(TT)_{m}$ mixing, depending on whether $J_{iso}(t)$ is ever 'small'.

³T_m? 60 µs 40 µs

References

¹Jacobberger, R. *et al. J. Am. Chem. Soc.* **144**, 2276-2283 (2022) ²Kawashima, Y. et al. ChemRxiv, doi: <u>10.26434/chemrxiv-2022-r4636</u> (2022) ³Tayebjee, M. J. Y. *et al. Nature Physics* **13**, 182–188 (2017) ⁴Stoll, S. *et al. J. Magn. Reson.* **130**, 86–96 (1998) ⁵Collins, M. I., et al. *J. Chem. Phys.* **151**, 164104 (2019) ⁶Collins, M. I., *et al.* doi:10.48550/arXiv.2206.00816 (2022)

Acknowledgements

This work was funded through the ARC Centre of Excellence in Exciton Science

science

PEANUT

Australian Government

Australian Research Council

SYDNEY