

Molecular transport in solution

ConvectionDiffusionActive propulsion?(directional flow)(directionless mixing)Nope, convection again.

Some theories suggests *directional transport* can result from *spatial control* over diffusion

Dey et al., Angew. Chem. Int. Ed. 2016, 55, 1113; MacDonald et al., Angew. Chem. Int. Ed. 2019, 58, 18864 https://en.wikipedia.org/wiki/File:ConvectionCells.svg, https://upload.wikimedia.org/wikipedia/commons/f/9/Blausen_0315_Diffusion.png

Goal: use switchable supramolecular assembly to control D.

Switchable anion binding

rijksuniversiteit groningen

Switchable anion binding

rijksuniversiteit groningen

- Synthesised a host (with a methyl for easier NMR)
- Best reported E/Z selectivity is for $H_2PO_4^-$ ('DHP')
- Turns out DHP is very strange...

Antielectrostatic hydrogen bonding

- Hydrogen bonding can outcompete electrostatic repulsion
- DHP known to form infinite chains in solid state
- Poorly understood in solution
- Characterisable by diffusion?

Diffusion studies of pure TBA-DHP

MHz, ³¹P PGSTE at 202 MHz. Values corrected for changes in viscosity.

Diffusion studies of pure TBA-DHP

Model assumptions

- Self-association is *isodesmic*: each association has same *K*_i
- Each molecule in solution is a hard sphere

...but when molecules associate into complexes, those are hard spheres too

• Complexes pack perfectly (volume is additive)

None of these are *true*, but the model seems 'good enough'.

So, how does DHP really behave in solution?

So, how does DHP really behave in solution?

Do complexes incorporate multiple hosts?

Do complexes incorporate multiple hosts?

Increasing host concentration decreases final *D* Suggests that structures incorporate multiple hosts

What we think is in solution

a) DHP chains; **b)** and **c)** $[HG_i]$ complexes; **d)** $[H_n(G_i)_n]$ complexes

Or discrete anion-templated supramolecular structures? Hard to say.

Time-resolved diffusion NMR with *in situ*

405 nm LED irradiation. 5 mM Z-1, 50 mM TBA-DHP, DMSO- d_6 with 0.5% added water, ¹H PGSTE at 500 MHz. Values corrected for changes in viscosity.

T.S.C. MacDonald, W.S. Price, J.E. Beves, ChemPhysChem 2019, 20, 926 - 930

Suppressing convection with NMR crimes

Time-resolved diffusion + in situ irradiation

Temperature increases by ~ ~0.3 K under irradiation

405 nm LED irradiation. 5 mM Z-1, 50 mM TBA-DHP, DMSO- d_6 with 0.5% added water, ¹H PGSTE at 500 MHz. Values corrected for changes in viscosity.

Time-resolved diffusion + in situ irradiation

⁴⁰⁵ nm LED irradiation. 5 mM Z-1, 50 mM TBA-DHP, DMSO- d_6 with 0.5% added water, ¹H PGSTE at 500 MHz. Values corrected for changes in viscosity.

Conclusions

- **Dihydrogen phosphate** isn't what you think: the free anion barely exists in solution (<50% at 5 mM in DMSO + 0.5% water)
- **First solution characterisation** of oligomerisation by antielectrostatic hydrogen bonding (unassisted by other interactions)
 - Diffusion NMR is a good tool for this and other weak associative phenomena
- Can control diffusion rates with photoswitchable self-assembly
 - Unresolved: can spatial control over *D* (using light) drive transport?

Acknowledgements

Beves group (UNSW) Jon and the Bevers

Feringa group (RUG) Ben, Sander, and the C-wing crew

Isodesmic model

Isodesmic association model:

$$K_i = \frac{[A_n]}{[A][A_{n-1}]}$$

Assumption: every stepwise association occurs with same K_i

$$D_n = n^{-\frac{1}{3}} D_0$$

Assumption: monomers and oligomers are hard spheres, and monomers pack perfectly

Modelled measured average diffusion:

$$\overline{D} = \frac{D_0}{[A]_0 K_i} \sum_{n=1}^{\infty} n^{\frac{2}{3}} (K_i[A])^n = \frac{D_0}{[A]_0 K_i} \operatorname{Li}_{-\frac{2}{3}} (K_i[A])$$

Assumption: each species contributes equally to NMR signal, ie no changes in T_1

Viscosity data - TBADHP

Viscosity measurements: TBA + hosts

[TBA-DHP]	[E]	[Z]	Density	Temperature	η	Error	η/η _o
/ m M	/ mM	/ mM	/ g/cm³	/ °C	/ mPa·s	/ %	
-	-	-	1.1833	25.04	2.149	0.02	1.000
50	-	-	1.1819	25.06	2.356	0.04	1.096
50	5	-	1.1820	25.05	2.390	0.08	1.112
50	-	5	1.1818	25.06	2.368	0.03	1.102
50	2.5	2.5	1.1820	25.06	2.375	0.02	1.105

Tabulated data: 50 mM DHP

Entry	[DHP]	[E-1]	[Z-1]	D _{DHP} ^[b]	D _E ^[c]	D _Z [c]	D _{TBA} [c]
	/ mM	/ mM	/ mM	/ 10 ⁻¹⁰ m ² s ⁻¹			
1	-	5	-	-	1.74± 0.03	-	-
2	-	-	5	-	-	1.87±0.01	-
3	50	-	-	2.16 ± 0.03	-	-	2.50 ± 0.02
4	50	5	-	1.93 ± 0.04	1.17 ± 0.03	-	2.39 ± 0.01
5	50	-	5	2.01 ± 0.03	-	1.39 ± 0.01	2.37 ± 0.02
6	50	5	5	1.83 ± 0.08	1.12 ± 0.02	1.36 ± 0.01	2.31 ± 0.01
7	50	2.5	2.5	1.97 ± 0.07	1.19 ± 0.01	1.45 ± 0.03	2.44 ± 0.01
8	50	0.5	0.5	2.05 ± 0.02	1.27 ± 0.03	1.57 ± 0.03	2.52 ± 0.02

[a] DMSO-d₆ with 0.5% added water. [b] 202 MHz ³¹P PGSTE, δ = 7 ms, Δ = 100 ms, g = 0 – 53.45 G cm⁻¹. [c] 500 MHz ¹H PGSTE, δ = 4 ms, Δ = 50 ms, g = 0 – 53.45 G cm⁻¹.

Example spectra: *E*-1 + TBA-DHP

