An all-optical molecular amplifier

Thomas MacDonald, Tim Schmidt, and Jon Beves
Photochemical feedback...

T. S. C. MacDonald, T. W. Schmidt, J. E. Beves, submitted for publication. ChemRxiv: 10.26434/chemrxiv. 13277855

Molecular logic

- Molecular devices that 'do logic' with chemical species or light
- But, it's hard to cascade this logic
- Need for input-output homogeneity: same outputs as inputs (like electronics!)
- For molecular logic, light is a good choice

Molecular photoswitches

- Reversible alteration of molecular structure with light
- Useful as active components in single-molecule devices

What if we drive switching with internally-emitted light?

Proposal: all-optical feedback

- Each isomer fluorescence, with different emission bands
- Each isomer switched with light emitted by the other isomer
- Positive feedback: each isomer 'autocatalytic' with $\lambda_{\text {ex }}$
- Mathematical model constructed to study this numerically

Modelled photoswitching without feedback

At each irradiation wavelength:

- One unique photostationary state (PSS) where rate of change $\dot{x}_{E}=0$

$$
\left(\mathrm{x}_{\mathrm{E}}=\text { mole fraction } E \text { isomer }\right)
$$

Modelled photoswitching with feedback

At a single irradiation wavelength:

- Three stationary points where $\dot{x}_{E}=0$
- Two dynamically stable PSSs
- One unstable bifurcation point

Bifurcating photodynamics

With feedback: 2 PSSs, bifurcation

Bifurcation only for limited $\lambda_{e x}$

Operation as a register (single-bit memory)

Reset to bifurcating composition $x_{E}{ }^{*}$

Operation as a register (single-bit memory)

- Input-output homogeneity
- Intrinsic amplification of inputs

Assumptions in model

1. All isomerisation is photoisomerisation
2. All intermolecular energy transfer involves emission and (re)absorption. No nonradiative transfer (i.e. the system is infinitely dilute)
3. All quantum yields are wavelength-independent.
4. No intramolecular energy transfer between emissive and photoswitchable electronic systems.

Conclusions

- Conceptually new molecular device: all-optical and self-amplifying
- Behaviour supported by numerical modelling
- Potential functionality as self-amplifying memory register

But:

- Intramolecular energy transfer (ignored here) hard to prevent in reality.
- Switchable fluorescence and visible-light photoswitches both challenging in their own right, combination is even harder

Acknowledgments

- A/Prof Jon Beves
- Prof. Tim Schmidt
- Beves Group UNSW
- Government for RTP

I. Mathematical model

Internal photon flux as function of composition:

$$
q_{i n t}^{0}(\lambda)=\sum_{j=E, Z} \phi_{j}^{F} \overline{f_{j}}(\lambda) \int_{\lambda} q_{e x t}^{0}\left(1-10^{-A_{e x t}}\right) \cdot \frac{x_{j} \xi_{j}^{F}}{\sum_{i=E, Z} x_{j} \xi_{i}^{\text {total }}} \mathrm{d} \lambda
$$

Change in composition as function of photon flux:

$$
\dot{x}_{E}=-\int\left[\frac{\left.q_{e x t}^{0}\left[1-10^{-A_{\text {ext }}}\right]+\underline{q}_{i n t}^{0}\right]^{1}-10^{\left.-A_{i n t}\right]}}{c_{0} V}\right]\left(\frac{x_{E} \xi_{E}^{i s o} \phi_{E \rightarrow Z}^{i s o}-x_{Z} \xi_{Z}^{i s o} \phi_{Z \rightarrow E}^{i s o}}{\sum_{i=E, Z} x_{i} \xi_{i}^{\text {total }}}\right) \mathrm{d} \lambda
$$

II. Modelled parameters

Table 1: Lorentzian parameters used for modeled absorption and emission spectra.

Spectrum	$\lambda_{0} / \mathrm{nm}$	γ / nm	α	$\varepsilon_{\max }(2 \alpha / \gamma \pi) / \mathrm{L} \mathrm{mol}^{-1} \mathrm{~cm}^{-1}$
ε_{E}^{F}	345	20	10^{6}	3.2×10^{4}
ε_{Z}^{F}	355	20	10^{6}	3.2×10^{4}
$\varepsilon_{E}^{\text {iso }}$	510	30	7×10^{5}	1.5×10^{4}
$\varepsilon_{Z \rightarrow E}^{i s o}$	405	20	8×10^{5}	2.6×10^{4}
$\overline{f_{E}}$	400	20	1^{a}	
f_{Z}	500	40	1^{a}	

${ }^{a}$ Emission spectrum normalized to an integrated area of 1 , subsequently multiplied by $\phi^{F}=0.7$.

III. Optical densities

High OD: 2 stable states with bifurcation point

Intermediate OD:
kind of weird?

Low OD: single stable state

IV. Experimental efforts

Operation of amplifier

Poor formation of excimer

Figure 5.16. Emission spectra of $\mathbf{5 . 9}$ in a) cyclohexane, b) CHCl_{3}, c) CHCl_{3} at $3 \times$ higher concentration than before. A decrease in monomer fluorescence ($400-430 \mathrm{~nm}$) and increase in excimer fluorescence (450-550 nm) can be seen after 530 nm irradiation and $E \rightarrow Z$ isomerisation, but the change in emission is small. In all cases, monomer emission at approximately 400 nm is greater than excimer emission (>450 nm).

Possible explanation: amide conformers

