

An all-optical molecular amplifier

Thomas MacDonald, Tim Schmidt, and Jon Beves

Molecular logic

- Molecular devices that 'do logic' with chemical species or light
- But, it's hard to cascade this logic
- Need for *input-output homogeneity*: same outputs as inputs (like electronics!)
- For molecular logic, **light** is a good choice

Molecular photoswitches

- Reversible alteration of molecular structure with light
- Useful as active components in single-molecule devices

What if we drive *switching* with *internally-emitted* light?

Proposal: all-optical feedback

- Each isomer fluorescence, with different emission bands
- Each isomer switched with light emitted by the other isomer
- **Positive feedback**: each isomer 'autocatalytic' with λ_{ex}
- Mathematical model constructed to study this numerically

Modelled photoswitching without feedback

At each irradiation wavelength:

• One *unique* photostationary state (PSS) where rate of change $\dot{x}_E = 0$

 $(x_E = mole fraction E isomer)$

Simulated spectra modelled as Lorentzian curves

Modelled photoswitching with feedback

At a single irradiation wavelength:

- Three stationary points where $\dot{x}_E = 0$
- Two dynamically stable PSSs
- One unstable bifurcation point

Bifurcating photodynamics

With feedback: 2 PSSs, bifurcation

Bifurcation only for limited λ_{ex}

What can we do with this?

Operation as a register (single-bit memory)

Reset to bifurcating composition x_{E}^{*}

Operation as a register (single-bit memory)

- Input-output homogeneity
- Intrinsic amplification of inputs

Assumptions in model

- 1. All isomerisation is photoisomerisation
- 2. All intermolecular energy transfer involves emission and (re)absorption. No nonradiative transfer (i.e. the system is infinitely dilute)
- 3. All quantum yields are wavelength-independent.
- 4. No intramolecular energy transfer between emissive and photoswitchable electronic systems.

Conclusions

- Conceptually new molecular device: all-optical and self-amplifying
- Behaviour supported by numerical modelling
- Potential functionality as self-amplifying memory register

But:

- Intramolecular energy transfer (ignored here) hard to prevent in reality.
- Switchable fluorescence and visible-light photoswitches both challenging in their own right, combination is even harder

Acknowledgments

- A/Prof Jon Beves
- Prof. Tim Schmidt
- Beves Group UNSW
- Government for RTP

I. Mathematical model

Internal photon flux as function of composition:

$$q_{int}^{0}(\lambda) = \sum_{j=E,Z} \phi_{j}^{F} \overline{f_{j}}(\lambda) \int_{\lambda} q_{ext}^{0} (1 - 10^{-A_{ext}}) \cdot \frac{x_{j} \varepsilon_{j}^{F}}{\sum_{i=E,Z} x_{i} \varepsilon_{i}^{total}} \, \mathrm{d}\lambda$$

Change in composition as function of photon flux:

$$\dot{x}_E = -\int \left[\frac{q_{ext}^0 [1 - 10^{-A_{ext}}] + q_{int}^0 [1 - 10^{-A_{int}}]}{c_0 V} \right] \begin{pmatrix} x_E \varepsilon_E^{iso} \phi_{E \to Z}^{iso} - x_Z \varepsilon_Z^{iso} \phi_{Z \to E}^{iso} \\ \sum_{i=E,Z} x_i \varepsilon_i^{total} \end{pmatrix} \, \mathrm{d}\lambda$$

II. Modelled parameters

Table 1: Lorentzian parameters used for modeled absorption and emission spectra.

Spectrum	λ_0 / nm	γ / nm	α	$\varepsilon_{max}(2lpha/\gamma\pi)$ / $\mathrm{Lmol^{-1}cm^{-1}}$
ε^F_E	345	20	10^{6}	3.2×10^4
ε_Z^F	355	20	10^{6}	3.2×10^{4}
$\varepsilon_{E \to Z}^{iso}$	510	30	7×10^5	1.5×10^4
$\varepsilon_{Z \to E}^{iso}$	405	20	8×10^5	2.6×10^4
$\overline{f_E}$	400	20	1^a	
$\frac{\varepsilon_{E}^{F}}{\varepsilon_{Z}^{F}}$ $\frac{\varepsilon_{E}^{iso}}{\varepsilon_{E} \rightarrow Z}$ $\frac{\varepsilon_{Z}^{iso}}{f_{E}}$	500	40	1^a	

^{*a*}Emission spectrum normalized to an integrated area of 1, subsequently multiplied by $\phi^F = 0.7$.

III. Optical densities

IV. Experimental efforts

Operation of amplifier

Figure 5.16. Emission spectra of 5.9 in a) cyclohexane, b) CHCl₃, c) CHCl₃ at $3 \times$ higher concentration than before. A decrease in monomer fluorescence (400–430 nm) and increase in excimer fluorescence (450–550 nm) can be seen after 530 nm irradiation and $E \rightarrow Z$ isomerisation, but the change in emission is small. In all cases, monomer emission at approximately 400 nm is greater than excimer emission (>450 nm).

Possible explanation: amide conformers

